Sequences

[Back to all operators]

On the surface, TLA+ sequences are very much like lists in your programming language of choice. If you are writing code in Java, Python, Lisp, C++, Scala, you will be tempted to use sequences in TLA+ too. This is simply due to the fact that arrays, vectors, and lists are the most efficient collections in programming languages (for many tasks, but not all of them). But TLA+ is not about efficient compilation of your data structures! Many algorithms can be expressed in a much nicer way with sets and functions. In general, use sequences when you really need them.

In pure TLA+, sequences are just tuples. As a tuple, a sequence is a function of the domain 1..n for some n >= 0 (the domain may be empty). The duck-typing principle applies to sequences too: Any function with the domain 1..n can also be treated as a sequence (or a tuple), and vice versa, tuples and sequences are also functions. So you can use all function and tuple operators on sequences.

Importantly, the domain of a sequence is 1..n for some n >= 0. So the indices in a sequence start with 1, not 0. For instance, <<1, 2>>[1] gives us 1, whereas <<1, 2>>[2] gives us 2.

The operators on sequences are defined in the standard module Sequences. To use it, write the EXTENDS clause in the first lines of your module. Like this:

------ MODULE MyLists ----====
EXTENDS Sequences
...
==============================

Construction. Sequences are constructed exactly as tuples in TLA+:

  <<2, 4, 8>>

Sometimes, you have to talk about all possible sequences. The operator Seq(S) constructs the set of all (finite) sequences that draw elements from the set S. For instance, <<1, 2, 2, 1>> \in Seq({1, 2, 3}). Note that Seq(S) is an infinite set. To use it with TLC, you often have to override this operator, see Specifying Systems, page 237.

Application. Simply use function application, e.g., s[2].

Immutability. As sequences are special kinds of functions, sequences are immutable.

Sequence operators. The module Sequences provides you with convenient operators on sequences:

  • Add to end: Append(s, e)
  • First and rest: Head(s) and Tail(s)
  • Length: Len(s)
  • Concatenation: s \o t
  • Subsequence: SubSeq(s, i, k)
  • Sequence filter: SelectSeq(s, Test)

See the detailed description in Operators.

Types. In contrast to pure TLA+ and TLC, the Apalache model checker distinguishes between general functions, tuples, and sequences. They all have different types. Essentially, a function has the type T_1 -> T_2 that restricts the arguments and results as follows: the arguments have the type T_1 and the results have the type T_2. A sequence has the type Seq(T_3), which restricts the sequence elements to have the same type T_3.

As sequences are also tuples in TLA+, this poses a challenge for the Apalache type checker. For instance, it can immediately figure out that <<1, "Foo">> is a tuple, as Apalache does not allow sequences to carry elements of different types. However, there is no way to say, whether <<1, 2, 3>> should be treated as a tuple or a sequence. Usually, this problem is resolved by annotating the type of a variable or the type of a user operator. See HOWTO write type annotations.

The current SMT encoding of sequences in Apalache is not optimized, so operations on sequences are often significantly slower than operations on sets.


Operators

Tuple/Sequence constructor

Notation: <<e_1, ..., e_n>>

LaTeX notation: tuple

Arguments: An arbitrary number of arguments.

Apalache type: This operator is overloaded. There are two potential types:

  1. A tuple constructor: (a_1, ..., a_n) => <<a_1, ..., a_n>>, for some types a_1, ..., a_n.
  2. A sequence constructor: (a, ..., a) => Seq(a), for some type a.

That is why the Apalache type checker is sometimes asking you to add annotations, in order to resolve this ambiguity.

Effect: The tuple/sequence constructor returns a function t that is constructed as follows:

  • set DOMAIN t to 1..n,
  • set r[i] to the value of e_i for i \in 1..n.

In Apalache, this constructor may be used to construct either a tuple, or a sequence. To distinguish between them, you will sometimes need a [type annotation].

Determinism: Deterministic.

Errors: No errors.

Example in TLA+:

  <<"Printer", 631>>

Example in Python: Python provides us with the syntax for constructing lists, which are indexed with 0!. If we want to stick to the principle "sequences are functions", we have to use a dictionary.

>>> ["Printer", 631]          # the pythonic way, a two-element list
['Printer', 631]
>>> { 1: "Printer", 2: 631 }  # the "sequences-are-functions" way
{1: 'Printer', 2: 631}


Sequence append

Notation: Append(seq, e)

LaTeX notation: Append(seq, e)

Arguments: Two arguments. The first argument should be a sequence, the second one is an arbitrary expression.

Apalache type: (Seq(a), a) => Seq(a), for some type a.

Effect: The operator Append(seq, e) constructs a new sequence newSeq as follows:

  • set DOMAIN newSeq to be (DOMAIN seq) \union { Len(seq) + 1 }.
  • set newSeq[i] to seq[i] for i \in 1..Len(seq).
  • set newSeq[Len(seq) + 1] to e.

Determinism: Deterministic.

Errors: The argument seq must be a sequence, that is, a function over integers 1..n for some n. Otherwise, the result is undefined in pure TLA+. TLC raises a model checking error. Apalache flags a static type error.

Apalache flags a static type error, when the type of e is not compatible with the type of the sequence elements.

Example in TLA+:

  Append(<<1, 2>>, 5)
    \* The sequence <<1, 2, 5>>

Example in Python:

>>> # the pythonic way: a list (indexed with 0, 1, ...)
>>> l = [ 1, 2 ]
>>> l.append(5)
>>> l
[1, 2, 5]
>>> # the TLA+ way
>>> l = { 1: 1, 2: 2 }
>>> { i: l[i] if i <= len(l) else 5
...   for i in range(1, len(l) + 2) }
{1: 1, 2: 2, 3: 5}


Function application

As sequences are functions, you can access sequence elements with function application, e.g., seq[2]. However, in the case of a sequence, the type of the function application is: (Seq(a), Int) => a, for some type a.


Sequence head

Notation: Head(seq)

LaTeX notation: Head(seq)

Arguments: One argument. The argument should be a sequence (or a tuple).

Apalache type: Seq(a) => a, for some type a.

Effect: The operator Head(seq) evaluates to seq[1]. If seq is an empty sequence, the result is undefined.

Determinism: Deterministic.

Errors: The arguments seq must be a sequence (or a tuple), that is, a function over integers 1..n for some n. Otherwise, the result is undefined in pure TLA+. TLC raises a model checking error. Apalache flags a static type error.

Example in TLA+:

  Head(<<3, 4>>)
    \* 3

Example in Python:

>>> # the pythonic way: using the list
>>> l = [ 3, 4 ]
>>> l[0]
3
>>> # the TLA+ way
>>> l = { 1: 3, 2: 4 }
>>> l[1]
3


Sequence tail

Notation: Tail(seq)

LaTeX notation: Tail(seq)

Arguments: One argument. The argument should be a sequence (or a tuple).

Apalache type: Seq(a) => Seq(a), for some type a.

Effect: The operator Tail(seq) constructs a new sequence newSeq as follows:

  • set DOMAIN newSeq to be (DOMAIN seq) \ { Len(seq) }.
  • set newSeq[i] to seq[i + 1] for i \in 1..(Len(seq) - 1).

If seq is an empty sequence, the result is undefined.

Apalache encodes a sequences as a triple <<fun, start, end>>, where start and end define a slice of the function fun. As a result, Tail is a very simple operation that just increments start.

Determinism: Deterministic.

Errors: The arguments seq must be a sequence (or a tuple), that is, a function over integers 1..n for some n. Otherwise, the result is undefined in pure TLA+. TLC raises a model checking error. Apalache flags a static type error.

Example in TLA+:

  Tail(<<3, 4, 5>>)
    \* <<4, 5>>

Example in Python:

>>> # the pythonic way: using the list
>>> l = [ 3, 4, 5 ]
>>> l[1:]
[4, 5]
>>> # the TLA+ way
>>> l = { 1: 3, 2: 4, 3: 5 }
>>> { i: l[i + 1] for i in range(1, len(l)) }
{1: 4, 2: 5}


Sequence length

Notation: Len(seq)

LaTeX notation: Len(seq)

Arguments: One argument. The argument should be a sequence (or a tuple).

Apalache type: Seq(a) => Int, for some type a.

Effect: The operator Len(seq) is semantically equivalent to Cardinality(DOMAIN seq).

Apalache encodes a sequences as a triple <<fun, start, end>>, where start and end define a slice of the function fun. As a result, Len is simply computed as end - start.

Determinism: Deterministic.

Errors: The argument seq must be a sequence (or a tuple), that is, a function over integers 1..n for some n. Otherwise, the result is undefined in pure TLA+. TLC raises a model checking error. Apalache flags a static type error.

Example in TLA+:

  Len(<<3, 4, 5>>)
    \* 3

Example in Python:

>>> # the pythonic way: using the list
>>> l = [ 3, 4, 5 ]
>>> len(l)
3
>>> # the TLA+ way
>>> l = { 1: 3, 2: 4, 3: 5 }
>>> len(l.keys())
3


Sequence concatenation

Notation: s \o t (or s \circ t)

LaTeX notation: seq-concat

Arguments: Two arguments: both should be sequences (or tuples).

Apalache type: (Seq(a), Seq(a)) => Seq(a), for some type a.

Effect: The operator s \o t constructs a new sequence newSeq as follows:

  • set DOMAIN newSeq to be 1..(Len(s) + Len(t)).
  • set newSeq[i] to s[i] for i \in 1..Len(s).
  • set newSeq[Len(s) + i] to t[i] for i \in 1..Len(t).

Determinism: Deterministic.

Errors: The arguments s and t must be sequences, that is, functions over integers 1..n and 1..k for some n and k. Otherwise, the result is undefined in pure TLA+. TLC raises a model checking error. Apalache flags a static type error.

Apalache flags a static type error, when the types of s and t are incompatible.

Example in TLA+:

  <<3, 5>> \o <<7, 9>>
    \* The sequence <<3, 5, 7, 9>>

Example in Python:

>>> # the pythonic way: a list (indexed with 0, 1, ...)
>>> l1 = [ 3, 5 ]
>>> l2 = [ 7, 9 ]
>>> l1 + l2
[3, 5, 7, 9]
>>> # the TLA+ way
>>> l1 = { 1: 3, 2: 5 }
>>> l2 = { 1: 7, 2: 9 }
>>> { i: l1[i] if i <= len(l1) else l2[i - len(l1)]
...    for i in range(1, len(l1) + len(l2) + 1) }
{1: 3, 2: 5, 3: 7, 4: 9}


Subsequence

Notation: SubSeq(seq, m, n)

LaTeX notation: SubSeq(seq, m, n)

Arguments: Three arguments: a sequence (tuple), and two integers.

Apalache type: (Seq(a), Int, Int) => Seq(a), for some type a.

Effect: The operator SubSeq(seq, m, n) constructs a new sequence newSeq as follows:

  • set DOMAIN newSeq to be 1..(n - m).
  • set newSeq[i] to s[m + i - 1] for i \in 1..(n - m + 1).

If m > n, then newSeq is equal to the empty sequence << >>. If m < 1 or n > Len(seq), then the result is undefined.

Determinism: Deterministic.

Errors: The argument seq must be a sequence, that is, a function over integers 1..k for some k. The arguments m and n must be integers. Otherwise, the result is undefined in pure TLA+. TLC raises a model checking error. Apalache flags a static type error.

Example in TLA+:

  SubSeq(<<3, 5, 9, 10>>, 2, 3)
    \* The sequence <<5, 9>>

Example in Python:

>>> # the pythonic way: a list (indexed with 0, 1, ...)
>>> l = [ 3, 5, 9, 10 ]
>>> l[1:3]
[5, 9]
>>> # the TLA+ way
>>> l = { 1: 3, 2: 5, 3: 9, 4: 10 }
>>> m = 2
>>> n = 3
>>> { i: l[i + m - 1]
...   for i in range(1, n - m + 2) }
{1: 5, 2: 9}


Sequence filter

Notation: SelectSeq(seq, Test)

LaTeX notation: SelectSeq(seq, Test)

Arguments: Two arguments: a sequence (a tuple) and a one-argument operator that evaluates to TRUE or FALSE when called with an element of seq as its argument.

Apalache type: (Seq(a), (a => Bool)) => Seq(a), for some type a.

Effect: The operator SelectSeq(seq, Test) constructs a new sequence newSeq that contains every element e of seq on which Test(e) evaluates to TRUE.

It is much easier to describe the effect of SelectSeq in words than to give a precise sequence of steps. See Examples.

Determinism: Deterministic.

Errors: If the arguments are not as described in Arguments, then the result is undefined in pure TLA+. TLC raises a model checking error.

Example in TLA+:

  LET Test(x) ==
    x % 2 = 0
  IN
  SelectSeq(<<3, 4, 9, 10, 11>>, Test)
    \* The sequence <<4, 10>>

Example in Python:

>>> # the pythonic way: a list (indexed with 0, 1, ...)
>>> def test(x):
...   return x % 2 == 0
>>>
>>> l = [ 3, 4, 9, 10, 11 ]
>>> [ x for x in l if test(x) ]
[4, 10]

>>> # the TLA+ way
>>> l = { 1: 3, 2: 4, 3: 9, 4: 10, 5: 11 }
>>> as_list = sorted(list(l.items()))
>>> filtered = [ x for (_, x) in as_list if test(x) ]
>>> { i: x
...   for (i, x) in zip(range(1, len(filtered) + 1), filtered)
... }
{1: 4, 2: 10}


All sequences

Notation: Seq(S)

LaTeX notation: Seq(S)

Arguments: One argument that should be a set.

Apalache type: Set(a) => Set(Seq(a)), for some type a.

Effect: The operator Seq(S) constructs the set of all (finite) sequences that contain elements from S. This set is infinite.

It is easy to give a recursive definition of all sequences whose length is bounded by some n >= 0:

RECURSIVE BSeq(_, _)
BSeq(S, n) ==
  IF n = 0
  THEN {<< >>}  \* the set that contains the empty sequence
  ELSE LET Shorter == BSeq(S, n - 1) IN
        Shorter \union { Append(seq, x): seq \in Shorter, x \in S }

Then we can define Seq(S) to be UNION { BSeq(S, n): n \in Nat }.

Determinism: Deterministic.

Errors: The argument S must be a set. Apalache flags a static type error, if S is not a set.

TLC raises a model checking error, when it meets Seq(S), as Seq(S) is infinite. You can override Seq(S) with its bounded version BSeq(S, n) for some n. See: Overriding Seq in TLC.

Apalache does not support Seq(S) yet. As a workaround, you can manually replace Seq(S) with BSeq(S, n) for some constant n. See the progress in Issue 314.

Example in TLA+:

  Seq({1, 2, 3})
    \* The infinite set
      { <<>>,
        <<1>>, <<2>>, <<3>>,
        <<1, 1>>, <<1, 2>>, <<1, 3>>,
            <<2, 1>>, <<2, 2>>, <<2, 3>>, <<3, 1>>, <<3, 2>>, <<3, 3>>
        ...
      }

Example in Python: We cannot construct an infinite set in Python. However, we could write an iterator that enumerates the sequences in Seq(S) till the end of the universe.